Metamath Proof Explorer


Theorem ecqusaddcl

Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses ecqusadd.i φINrmSGrpR
ecqusadd.b B=BaseR
ecqusadd.g ˙=R~QGI
ecqusadd.q Q=R/𝑠˙
Assertion ecqusaddcl φABCBA˙+QC˙BaseQ

Proof

Step Hyp Ref Expression
1 ecqusadd.i φINrmSGrpR
2 ecqusadd.b B=BaseR
3 ecqusadd.g ˙=R~QGI
4 ecqusadd.q Q=R/𝑠˙
5 1 2 3 4 ecqusadd φABCBA+RC˙=A˙+QC˙
6 1 elfvexd φRV
7 nsgsubg INrmSGrpRISubGrpR
8 subgrcl ISubGrpRRGrp
9 1 7 8 3syl φRGrp
10 9 anim1i φABCBRGrpABCB
11 3anass RGrpABCBRGrpABCB
12 10 11 sylibr φABCBRGrpABCB
13 eqid +R=+R
14 2 13 grpcl RGrpABCBA+RCB
15 12 14 syl φABCBA+RCB
16 eqid BaseQ=BaseQ
17 3 4 2 16 quseccl0 RVA+RCBA+RC˙BaseQ
18 6 15 17 syl2an2r φABCBA+RC˙BaseQ
19 5 18 eqeltrrd φABCBA˙+QC˙BaseQ