Metamath Proof Explorer


Theorem ecuncnvepres

Description: The restricted union with converse epsilon relation coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion ecuncnvepres B A B R E -1 A = B B R

Proof

Step Hyp Ref Expression
1 ecunres B A B R E -1 A = B R A B E -1 A
2 elecreseq B A B R A = B R
3 eccnvepres2 B A B E -1 A = B
4 2 3 uneq12d B A B R A B E -1 A = B R B
5 1 4 eqtrd B A B R E -1 A = B R B
6 uncom B R B = B B R
7 5 6 eqtrdi B A B R E -1 A = B B R