Metamath Proof Explorer


Theorem edgiedgb

Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020) (Revised by AV, 8-Dec-2021)

Ref Expression
Hypothesis edgiedgb.i I=iEdgG
Assertion edgiedgb FunIEEdgGxdomIE=Ix

Proof

Step Hyp Ref Expression
1 edgiedgb.i I=iEdgG
2 edgval EdgG=raniEdgG
3 1 eqcomi iEdgG=I
4 3 rneqi raniEdgG=ranI
5 2 4 eqtri EdgG=ranI
6 5 eleq2i EEdgGEranI
7 elrnrexdmb FunIEranIxdomIE=Ix
8 6 7 bitrid FunIEEdgGxdomIE=Ix