Metamath Proof Explorer


Theorem elrnrexdmb

Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017)

Ref Expression
Assertion elrnrexdmb FunFYranFxdomFY=Fx

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fvelrnb FFndomFYranFxdomFFx=Y
3 1 2 sylbi FunFYranFxdomFFx=Y
4 eqcom Y=FxFx=Y
5 4 rexbii xdomFY=FxxdomFFx=Y
6 3 5 bitr4di FunFYranFxdomFY=Fx