Metamath Proof Explorer


Theorem edgssv2

Description: An edge of a simple graph is an unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020)

Ref Expression
Hypotheses edgssv2.v V=VtxG
edgssv2.e E=EdgG
Assertion edgssv2 GUSGraphCECVC=2

Proof

Step Hyp Ref Expression
1 edgssv2.v V=VtxG
2 edgssv2.e E=EdgG
3 2 eleq2i CECEdgG
4 edgusgr GUSGraphCEdgGC𝒫VtxGC=2
5 3 4 sylan2b GUSGraphCEC𝒫VtxGC=2
6 elpwi C𝒫VtxGCVtxG
7 6 anim1i C𝒫VtxGC=2CVtxGC=2
8 5 7 syl GUSGraphCECVtxGC=2
9 1 a1i GUSGraphCEV=VtxG
10 9 sseq2d GUSGraphCECVCVtxG
11 10 anbi1d GUSGraphCECVC=2CVtxGC=2
12 8 11 mpbird GUSGraphCECVC=2