Metamath Proof Explorer


Theorem efmnd2hash

Description: The monoid of endofunctions on a (proper) pair has cardinality 4 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses efmnd1bas.1 No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmnd1bas.2 B=BaseG
efmnd2bas.0 A=IJ
Assertion efmnd2hash IVJWIJB=4

Proof

Step Hyp Ref Expression
1 efmnd1bas.1 Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmnd1bas.2 B=BaseG
3 efmnd2bas.0 A=IJ
4 prfi IJFin
5 3 4 eqeltri AFin
6 1 2 efmndhash AFinB=AA
7 5 6 ax-mp B=AA
8 3 fveq2i A=IJ
9 elex IVIV
10 elex JWJV
11 id IJIJ
12 9 10 11 3anim123i IVJWIJIVJVIJ
13 hashprb IVJVIJIJ=2
14 12 13 sylib IVJWIJIJ=2
15 8 14 eqtrid IVJWIJA=2
16 15 15 oveq12d IVJWIJAA=22
17 sq2 22=4
18 16 17 eqtrdi IVJWIJAA=4
19 7 18 eqtrid IVJWIJB=4