Metamath Proof Explorer


Theorem submefmnd

Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set A , contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set A . Analogous to pgrpsubgsymg . (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypotheses submefmnd.g No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
submefmnd.b B=BaseM
submefmnd.0 0˙=0M
submefmnd.c F=BaseS
Assertion submefmnd AVSMndFB0˙F+S=fF,gFfgFSubMndM

Proof

Step Hyp Ref Expression
1 submefmnd.g Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
2 submefmnd.b B=BaseM
3 submefmnd.0 0˙=0M
4 submefmnd.c F=BaseS
5 1 efmndmnd AVMMnd
6 simpl1 SMndFB0˙F+S=fF,gFfgSMnd
7 5 6 anim12i AVSMndFB0˙F+S=fF,gFfgMMndSMnd
8 simpl2 SMndFB0˙F+S=fF,gFfgFB
9 simpl3 SMndFB0˙F+S=fF,gFfg0˙F
10 simpr SMndFB0˙F+S=fF,gFfg+S=fF,gFfg
11 resmpo FBFBfB,gBfgF×F=fF,gFfg
12 11 anidms FBfB,gBfgF×F=fF,gFfg
13 eqid +M=+M
14 1 2 13 efmndplusg +M=fB,gBfg
15 14 eqcomi fB,gBfg=+M
16 15 reseq1i fB,gBfgF×F=+MF×F
17 12 16 eqtr3di FBfF,gFfg=+MF×F
18 17 3ad2ant2 SMndFB0˙FfF,gFfg=+MF×F
19 18 adantr SMndFB0˙F+S=fF,gFfgfF,gFfg=+MF×F
20 10 19 eqtrd SMndFB0˙F+S=fF,gFfg+S=+MF×F
21 8 9 20 3jca SMndFB0˙F+S=fF,gFfgFB0˙F+S=+MF×F
22 21 adantl AVSMndFB0˙F+S=fF,gFfgFB0˙F+S=+MF×F
23 2 4 3 mndissubm MMndSMndFB0˙F+S=+MF×FFSubMndM
24 7 22 23 sylc AVSMndFB0˙F+S=fF,gFfgFSubMndM
25 24 ex AVSMndFB0˙F+S=fF,gFfgFSubMndM