Metamath Proof Explorer


Theorem efmndov

Description: The value of the group operation of the monoid of endofunctions on A . (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndtset.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndplusg.b B=BaseG
efmndplusg.p +˙=+G
Assertion efmndov XBYBX+˙Y=XY

Proof

Step Hyp Ref Expression
1 efmndtset.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndplusg.b B=BaseG
3 efmndplusg.p +˙=+G
4 coexg XBYBXYV
5 coeq1 f=Xfg=Xg
6 coeq2 g=YXg=XY
7 1 2 3 efmndplusg +˙=fB,gBfg
8 5 6 7 ovmpog XBYBXYVX+˙Y=XY
9 4 8 mpd3an3 XBYBX+˙Y=XY