Metamath Proof Explorer


Theorem efper

Description: The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efper AKeA+i2πK=eA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 2cn 2
3 picn π
4 2 3 mulcli 2π
5 1 4 mulcli i2π
6 zcn KK
7 mulcl i2πKi2πK
8 5 6 7 sylancr Ki2πK
9 efadd Ai2πKeA+i2πK=eAei2πK
10 8 9 sylan2 AKeA+i2πK=eAei2πK
11 ef2kpi Kei2πK=1
12 11 oveq2d KeAei2πK=eA1
13 efcl AeA
14 13 mulridd AeA1=eA
15 12 14 sylan9eqr AKeAei2πK=eA
16 10 15 eqtrd AKeA+i2πK=eA