Metamath Proof Explorer


Theorem eftlcvg

Description: The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypothesis eftl.1 F=n0Ann!
Assertion eftlcvg AM0seqM+Fdom

Proof

Step Hyp Ref Expression
1 eftl.1 F=n0Ann!
2 1 efcllem Aseq0+Fdom
3 2 adantr AM0seq0+Fdom
4 nn0uz 0=0
5 simpr AM0M0
6 1 eftval k0Fk=Akk!
7 6 adantl AM0k0Fk=Akk!
8 eftcl Ak0Akk!
9 8 adantlr AM0k0Akk!
10 7 9 eqeltrd AM0k0Fk
11 4 5 10 iserex AM0seq0+FdomseqM+Fdom
12 3 11 mpbid AM0seqM+Fdom