Metamath Proof Explorer


Theorem efval

Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion efval AeA=k0Akk!

Proof

Step Hyp Ref Expression
1 oveq1 x=Axk=Ak
2 1 oveq1d x=Axkk!=Akk!
3 2 sumeq2sdv x=Ak0xkk!=k0Akk!
4 df-ef exp=xk0xkk!
5 sumex k0Akk!V
6 3 4 5 fvmpt AeA=k0Akk!