Metamath Proof Explorer


Theorem eigorthi

Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for two eigenvectors A and B to be orthogonal. Generalization of Equation 1.31 of Hughes p. 49. (Contributed by NM, 23-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses eigorthi.1 A
eigorthi.2 B
eigorthi.3 C
eigorthi.4 D
Assertion eigorthi TA=CATB=DBCDAihTB=TAihBAihB=0

Proof

Step Hyp Ref Expression
1 eigorthi.1 A
2 eigorthi.2 B
3 eigorthi.3 C
4 eigorthi.4 D
5 oveq2 TB=DBAihTB=AihDB
6 his5 DABAihDB=DAihB
7 4 1 2 6 mp3an AihDB=DAihB
8 5 7 eqtrdi TB=DBAihTB=DAihB
9 oveq1 TA=CATAihB=CAihB
10 ax-his3 CABCAihB=CAihB
11 3 1 2 10 mp3an CAihB=CAihB
12 9 11 eqtrdi TA=CATAihB=CAihB
13 8 12 eqeqan12rd TA=CATB=DBAihTB=TAihBDAihB=CAihB
14 1 2 hicli AihB
15 4 cjcli D
16 mulcan2 DCAihBAihB0DAihB=CAihBD=C
17 15 3 16 mp3an12 AihBAihB0DAihB=CAihBD=C
18 14 17 mpan AihB0DAihB=CAihBD=C
19 eqcom D=CC=D
20 18 19 bitrdi AihB0DAihB=CAihBC=D
21 20 biimpcd DAihB=CAihBAihB0C=D
22 21 necon1d DAihB=CAihBCDAihB=0
23 22 com12 CDDAihB=CAihBAihB=0
24 oveq2 AihB=0DAihB=D0
25 oveq2 AihB=0CAihB=C0
26 3 mul01i C0=0
27 15 mul01i D0=0
28 26 27 eqtr4i C0=D0
29 25 28 eqtrdi AihB=0CAihB=D0
30 24 29 eqtr4d AihB=0DAihB=CAihB
31 23 30 impbid1 CDDAihB=CAihBAihB=0
32 13 31 sylan9bb TA=CATB=DBCDAihTB=TAihBAihB=0