Metamath Proof Explorer


Theorem elbdop2

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion elbdop2 TBndLinOpTLinOpnormopT

Proof

Step Hyp Ref Expression
1 elbdop TBndLinOpTLinOpnormopT<+∞
2 lnopf TLinOpT:
3 nmopreltpnf T:normopTnormopT<+∞
4 2 3 syl TLinOpnormopTnormopT<+∞
5 4 pm5.32i TLinOpnormopTTLinOpnormopT<+∞
6 1 5 bitr4i TBndLinOpTLinOpnormopT