Metamath Proof Explorer


Theorem elbl4

Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion elbl4 DPsMetXR+AXBXBAballDRBD-10RA

Proof

Step Hyp Ref Expression
1 rpxr R+R*
2 blcomps DPsMetXR*AXBXBAballDRABballDR
3 1 2 sylanl2 DPsMetXR+AXBXBAballDRABballDR
4 simpll DPsMetXR+AXBXDPsMetX
5 simprr DPsMetXR+AXBXBX
6 simplr DPsMetXR+AXBXR+
7 blval2 DPsMetXBXR+BballDR=D-10RB
8 7 eleq2d DPsMetXBXR+ABballDRAD-10RB
9 4 5 6 8 syl3anc DPsMetXR+AXBXABballDRAD-10RB
10 elimasng BXAXAD-10RBBAD-10R
11 df-br BD-10RABAD-10R
12 10 11 bitr4di BXAXAD-10RBBD-10RA
13 12 ancoms AXBXAD-10RBBD-10RA
14 13 adantl DPsMetXR+AXBXAD-10RBBD-10RA
15 3 9 14 3bitrd DPsMetXR+AXBXBAballDRBD-10RA