Metamath Proof Explorer


Theorem eldiftp

Description: Membership in a set with three elements removed. Similar to eldifsn and eldifpr . (Contributed by David A. Wheeler, 22-Jul-2017)

Ref Expression
Assertion eldiftp ABCDEABACADAE

Proof

Step Hyp Ref Expression
1 eldif ABCDEAB¬ACDE
2 eltpg ABACDEA=CA=DA=E
3 2 notbid AB¬ACDE¬A=CA=DA=E
4 ne3anior ACADAE¬A=CA=DA=E
5 3 4 bitr4di AB¬ACDEACADAE
6 5 pm5.32i AB¬ACDEABACADAE
7 1 6 bitri ABCDEABACADAE