Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
eldmcoss2
Next ⟩
eldm1cossres
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldmcoss2
Description:
Elementhood in the domain of cosets.
(Contributed by
Peter Mazsa
, 28-Dec-2018)
Ref
Expression
Assertion
eldmcoss2
⊢
A
∈
V
→
A
∈
dom
⁡
≀
R
↔
A
≀
R
A
Proof
Step
Hyp
Ref
Expression
1
eldmcoss
⊢
A
∈
V
→
A
∈
dom
⁡
≀
R
↔
∃
u
u
R
A
2
brcoss
⊢
A
∈
V
∧
A
∈
V
→
A
≀
R
A
↔
∃
u
u
R
A
∧
u
R
A
3
2
anidms
⊢
A
∈
V
→
A
≀
R
A
↔
∃
u
u
R
A
∧
u
R
A
4
pm4.24
⊢
u
R
A
↔
u
R
A
∧
u
R
A
5
4
exbii
⊢
∃
u
u
R
A
↔
∃
u
u
R
A
∧
u
R
A
6
3
5
bitr4di
⊢
A
∈
V
→
A
≀
R
A
↔
∃
u
u
R
A
7
1
6
bitr4d
⊢
A
∈
V
→
A
∈
dom
⁡
≀
R
↔
A
≀
R
A