Metamath Proof Explorer


Theorem eldmcoss2

Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018)

Ref Expression
Assertion eldmcoss2
|- ( A e. V -> ( A e. dom ,~ R <-> A ,~ R A ) )

Proof

Step Hyp Ref Expression
1 eldmcoss
 |-  ( A e. V -> ( A e. dom ,~ R <-> E. u u R A ) )
2 brcoss
 |-  ( ( A e. V /\ A e. V ) -> ( A ,~ R A <-> E. u ( u R A /\ u R A ) ) )
3 2 anidms
 |-  ( A e. V -> ( A ,~ R A <-> E. u ( u R A /\ u R A ) ) )
4 pm4.24
 |-  ( u R A <-> ( u R A /\ u R A ) )
5 4 exbii
 |-  ( E. u u R A <-> E. u ( u R A /\ u R A ) )
6 3 5 bitr4di
 |-  ( A e. V -> ( A ,~ R A <-> E. u u R A ) )
7 1 6 bitr4d
 |-  ( A e. V -> ( A e. dom ,~ R <-> A ,~ R A ) )