Metamath Proof Explorer


Theorem eldmressn

Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressn BdomFAB=A

Proof

Step Hyp Ref Expression
1 elin BAdomFBABdomF
2 elsni BAB=A
3 2 adantr BABdomFB=A
4 1 3 sylbi BAdomFB=A
5 dmres domFA=AdomF
6 4 5 eleq2s BdomFAB=A