Metamath Proof Explorer


Theorem eldmxrncnvepres

Description: Element of the domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eldmxrncnvepres B V B dom R E -1 A B A B B R

Proof

Step Hyp Ref Expression
1 eldmres3 B V B dom R A B A B R
2 1 anbi1d B V B dom R A B B A B R B
3 dmxrncnvepres dom R E -1 A = dom R A
4 3 eleq2i B dom R E -1 A B dom R A
5 eldifsn B dom R A B dom R A B
6 4 5 bitri B dom R E -1 A B dom R A B
7 3anan32 B A B B R B A B R B
8 2 6 7 3bitr4g B V B dom R E -1 A B A B B R