Metamath Proof Explorer


Theorem eldmxrncnvepres2

Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet span ( R |X. ( ' E | A ) ) : a B belongs to the domain of the span exactly when B is in A and has at least one x e. B and y with B R y . (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eldmxrncnvepres2 B V B dom R E -1 A B A x x B y B R y

Proof

Step Hyp Ref Expression
1 eldmres B V B dom R A B A y B R y
2 n0 B x x B
3 2 a1i B V B x x B
4 1 3 anbi12d B V B dom R A B B A y B R y x x B
5 dmxrncnvepres dom R E -1 A = dom R A
6 5 eleq2i B dom R E -1 A B dom R A
7 eldifsn B dom R A B dom R A B
8 6 7 bitri B dom R E -1 A B dom R A B
9 3anan32 B A x x B y B R y B A y B R y x x B
10 4 8 9 3bitr4g B V B dom R E -1 A B A x x B y B R y