Metamath Proof Explorer


Theorem eldmxrncnvepres2

Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet span ( R |X. ( ' E | A ) ) : a B belongs to the domain of the span exactly when B is in A and has at least one x e. B and y with B R y . (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eldmxrncnvepres2 ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑥 𝑥𝐵 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 eldmres ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )
2 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐵 )
3 2 a1i ( 𝐵𝑉 → ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐵 ) )
4 1 3 anbi12d ( 𝐵𝑉 → ( ( 𝐵 ∈ dom ( 𝑅𝐴 ) ∧ 𝐵 ≠ ∅ ) ↔ ( ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑥 𝑥𝐵 ) ) )
5 dmxrncnvepres dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( dom ( 𝑅𝐴 ) ∖ { ∅ } )
6 5 eleq2i ( 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ 𝐵 ∈ ( dom ( 𝑅𝐴 ) ∖ { ∅ } ) )
7 eldifsn ( 𝐵 ∈ ( dom ( 𝑅𝐴 ) ∖ { ∅ } ) ↔ ( 𝐵 ∈ dom ( 𝑅𝐴 ) ∧ 𝐵 ≠ ∅ ) )
8 6 7 bitri ( 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ dom ( 𝑅𝐴 ) ∧ 𝐵 ≠ ∅ ) )
9 3anan32 ( ( 𝐵𝐴 ∧ ∃ 𝑥 𝑥𝐵 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑥 𝑥𝐵 ) )
10 4 8 9 3bitr4g ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑥 𝑥𝐵 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )