Metamath Proof Explorer


Theorem eleccossin

Description: Two ways of saying that the coset of A and the coset of C have the common element B . (Contributed by Peter Mazsa, 15-Oct-2021)

Ref Expression
Assertion eleccossin B V C W B A R C R A R B B R C

Proof

Step Hyp Ref Expression
1 elin B A R C R B A R B C R
2 relcoss Rel R
3 relelec Rel R B A R A R B
4 2 3 ax-mp B A R A R B
5 relelec Rel R B C R C R B
6 2 5 ax-mp B C R C R B
7 4 6 anbi12i B A R B C R A R B C R B
8 1 7 bitri B A R C R A R B C R B
9 brcosscnvcoss B V C W B R C C R B
10 9 anbi2d B V C W A R B B R C A R B C R B
11 8 10 bitr4id B V C W B A R C R A R B B R C