Metamath Proof Explorer


Theorem eleccossin

Description: Two ways of saying that the coset of A and the coset of C have the common element B . (Contributed by Peter Mazsa, 15-Oct-2021)

Ref Expression
Assertion eleccossin BVCWBARCRARBBRC

Proof

Step Hyp Ref Expression
1 elin BARCRBARBCR
2 relcoss RelR
3 relelec RelRBARARB
4 2 3 ax-mp BARARB
5 relelec RelRBCRCRB
6 2 5 ax-mp BCRCRB
7 4 6 anbi12i BARBCRARBCRB
8 1 7 bitri BARCRARBCRB
9 brcosscnvcoss BVCWBRCCRB
10 9 anbi2d BVCWARBBRCARBCRB
11 8 10 bitr4id BVCWBARCRARBBRC