Metamath Proof Explorer


Theorem trcoss2

Description: Equivalent expressions for the transitivity of cosets by R . (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 16-Oct-2021)

Ref Expression
Assertion trcoss2 xyzxRyyRzxRzxzxRzRxR-1zR-1

Proof

Step Hyp Ref Expression
1 alcom yzxRyyRzxRzzyxRyyRzxRz
2 1 albii xyzxRyyRzxRzxzyxRyyRzxRz
3 19.23v yyxRzRxR-1zR-1yyxRzRxR-1zR-1
4 eleccossin yVzVyxRzRxRyyRz
5 4 el2v yxRzRxRyyRz
6 5 bicomi xRyyRzyxRzR
7 brcoss3 xVzVxRzxR-1zR-1
8 7 el2v xRzxR-1zR-1
9 6 8 imbi12i xRyyRzxRzyxRzRxR-1zR-1
10 9 albii yxRyyRzxRzyyxRzRxR-1zR-1
11 n0 xRzRyyxRzR
12 11 imbi1i xRzRxR-1zR-1yyxRzRxR-1zR-1
13 3 10 12 3bitr4i yxRyyRzxRzxRzRxR-1zR-1
14 13 2albii xzyxRyyRzxRzxzxRzRxR-1zR-1
15 2 14 bitri xyzxRyyRzxRzxzxRzRxR-1zR-1