Step |
Hyp |
Ref |
Expression |
1 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
3 |
|
19.23v |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
4 |
|
eleccossin |
⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ↔ ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) ) |
5 |
4
|
el2v |
⊢ ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ↔ ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) |
6 |
5
|
bicomi |
⊢ ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ↔ 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ) |
7 |
|
brcoss3 |
⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ≀ 𝑅 𝑧 ↔ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
8 |
7
|
el2v |
⊢ ( 𝑥 ≀ 𝑅 𝑧 ↔ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) |
9 |
6 8
|
imbi12i |
⊢ ( ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
11 |
|
n0 |
⊢ ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ) |
12 |
11
|
imbi1i |
⊢ ( ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
13 |
3 10 12
|
3bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
14 |
13
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
15 |
2 14
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |