Metamath Proof Explorer


Theorem trcoss2

Description: Equivalent expressions for the transitivity of cosets by R . (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 16-Oct-2021)

Ref Expression
Assertion trcoss2 ( ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ∀ 𝑥𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ∀ 𝑧𝑦 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )
2 1 albii ( ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ∀ 𝑥𝑧𝑦 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )
3 19.23v ( ∀ 𝑦 ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
4 eleccossin ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ↔ ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) ) )
5 4 el2v ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ↔ ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) )
6 5 bicomi ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) ↔ 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) )
7 brcoss3 ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥𝑅 𝑧 ↔ ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
8 7 el2v ( 𝑥𝑅 𝑧 ↔ ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ )
9 6 8 imbi12i ( ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
10 9 albii ( ∀ 𝑦 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
11 n0 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) )
12 11 imbi1i ( ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
13 3 10 12 3bitr4i ( ∀ 𝑦 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
14 13 2albii ( ∀ 𝑥𝑧𝑦 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ∀ 𝑥𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )
15 2 14 bitri ( ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ∀ 𝑥𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] 𝑅 ∩ [ 𝑧 ] 𝑅 ) ≠ ∅ ) )