Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( B e. [ A ] ,~ R /\ B e. [ C ] ,~ R ) ) |
2 |
|
relcoss |
|- Rel ,~ R |
3 |
|
relelec |
|- ( Rel ,~ R -> ( B e. [ A ] ,~ R <-> A ,~ R B ) ) |
4 |
2 3
|
ax-mp |
|- ( B e. [ A ] ,~ R <-> A ,~ R B ) |
5 |
|
relelec |
|- ( Rel ,~ R -> ( B e. [ C ] ,~ R <-> C ,~ R B ) ) |
6 |
2 5
|
ax-mp |
|- ( B e. [ C ] ,~ R <-> C ,~ R B ) |
7 |
4 6
|
anbi12i |
|- ( ( B e. [ A ] ,~ R /\ B e. [ C ] ,~ R ) <-> ( A ,~ R B /\ C ,~ R B ) ) |
8 |
1 7
|
bitri |
|- ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( A ,~ R B /\ C ,~ R B ) ) |
9 |
|
brcosscnvcoss |
|- ( ( B e. V /\ C e. W ) -> ( B ,~ R C <-> C ,~ R B ) ) |
10 |
9
|
anbi2d |
|- ( ( B e. V /\ C e. W ) -> ( ( A ,~ R B /\ B ,~ R C ) <-> ( A ,~ R B /\ C ,~ R B ) ) ) |
11 |
8 10
|
bitr4id |
|- ( ( B e. V /\ C e. W ) -> ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( A ,~ R B /\ B ,~ R C ) ) ) |