Metamath Proof Explorer


Theorem eleigvec2

Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eleigvec2 T:AeigvecTAA0TAspanA

Proof

Step Hyp Ref Expression
1 eleigvec T:AeigvecTAA0xTA=xA
2 elspansn ATAspanAxTA=xA
3 2 adantr AA0TAspanAxTA=xA
4 3 pm5.32i AA0TAspanAAA0xTA=xA
5 df-3an AA0TAspanAAA0TAspanA
6 df-3an AA0xTA=xAAA0xTA=xA
7 4 5 6 3bitr4i AA0TAspanAAA0xTA=xA
8 1 7 bitr4di T:AeigvecTAA0TAspanA