Metamath Proof Explorer


Theorem eleqtrrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrrid.1 AB
eleqtrrid.2 φC=B
Assertion eleqtrrid φAC

Proof

Step Hyp Ref Expression
1 eleqtrrid.1 AB
2 eleqtrrid.2 φC=B
3 2 eqcomd φB=C
4 1 3 eleqtrid φAC