Metamath Proof Explorer


Theorem eleqvrelsrel

Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021)

Ref Expression
Assertion eleqvrelsrel RVREqvRelsEqvRelR

Proof

Step Hyp Ref Expression
1 elrelsrel RVRRelsRelR
2 1 anbi2d RVIdomRRR-1RRRRRRelsIdomRRR-1RRRRRelR
3 eleqvrels2 REqvRelsIdomRRR-1RRRRRRels
4 dfeqvrel2 EqvRelRIdomRRR-1RRRRRelR
5 2 3 4 3bitr4g RVREqvRelsEqvRelR