Metamath Proof Explorer


Theorem elestrchom

Description: A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C = ExtStrCat U
estrcbas.u φ U V
estrchomfval.h H = Hom C
estrchom.x φ X U
estrchom.y φ Y U
estrchom.a A = Base X
estrchom.b B = Base Y
Assertion elestrchom φ F X H Y F : A B

Proof

Step Hyp Ref Expression
1 estrcbas.c C = ExtStrCat U
2 estrcbas.u φ U V
3 estrchomfval.h H = Hom C
4 estrchom.x φ X U
5 estrchom.y φ Y U
6 estrchom.a A = Base X
7 estrchom.b B = Base Y
8 1 2 3 4 5 6 7 estrchom φ X H Y = B A
9 8 eleq2d φ F X H Y F B A
10 7 fvexi B V
11 10 a1i φ B V
12 6 fvexi A V
13 12 a1i φ A V
14 11 13 elmapd φ F B A F : A B
15 9 14 bitrd φ F X H Y F : A B