Metamath Proof Explorer


Theorem elfzo2

Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzo2 KM..^NKMNK<N

Proof

Step Hyp Ref Expression
1 an4 KMNMKK<NKMMKNK<N
2 df-3an KMNKMN
3 2 anbi1i KMNMKK<NKMNMKK<N
4 eluz2 KMMKMK
5 3ancoma MKMKKMMK
6 df-3an KMMKKMMK
7 4 5 6 3bitri KMKMMK
8 7 anbi1i KMNK<NKMMKNK<N
9 1 3 8 3bitr4i KMNMKK<NKMNK<N
10 elfzoelz KM..^NK
11 elfzoel1 KM..^NM
12 elfzoel2 KM..^NN
13 10 11 12 3jca KM..^NKMN
14 elfzo KMNKM..^NMKK<N
15 13 14 biadanii KM..^NKMNMKK<N
16 3anass KMNK<NKMNK<N
17 9 15 16 3bitr4i KM..^NKMNK<N