Metamath Proof Explorer


Theorem elfzom1elp1fzo1

Description: Membership of a nonnegative integer incremented by one in a half-open range of positive integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion elfzom1elp1fzo1 NI0..^N1I+11..^N

Proof

Step Hyp Ref Expression
1 elfzoelz I0..^N1I
2 1 zcnd I0..^N1I
3 pncan1 II+1-1=I
4 2 3 syl I0..^N1I+1-1=I
5 id I0..^N1I0..^N1
6 4 5 eqeltrd I0..^N1I+1-10..^N1
7 6 adantl NI0..^N1I+1-10..^N1
8 1 peano2zd I0..^N1I+1
9 8 anim1i I0..^N1NI+1N
10 9 ancoms NI0..^N1I+1N
11 elfzom1b I+1NI+11..^NI+1-10..^N1
12 10 11 syl NI0..^N1I+11..^NI+1-10..^N1
13 7 12 mpbird NI0..^N1I+11..^N