Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hereditarily Finite Sets
elhf
Next ⟩
elhf2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elhf
Description:
Membership in the hereditarily finite sets.
(Contributed by
Scott Fenton
, 9-Jul-2015)
Ref
Expression
Assertion
elhf
⊢
A
∈
Hf
↔
∃
x
∈
ω
A
∈
R
1
⁡
x
Proof
Step
Hyp
Ref
Expression
1
df-hf
⊢
Hf
=
⋃
R
1
ω
2
1
eleq2i
⊢
A
∈
Hf
↔
A
∈
⋃
R
1
ω
3
r111
⊢
R
1
:
On
⟶
1-1
V
4
f1fun
⊢
R
1
:
On
⟶
1-1
V
→
Fun
⁡
R
1
5
eluniima
⊢
Fun
⁡
R
1
→
A
∈
⋃
R
1
ω
↔
∃
x
∈
ω
A
∈
R
1
⁡
x
6
3
4
5
mp2b
⊢
A
∈
⋃
R
1
ω
↔
∃
x
∈
ω
A
∈
R
1
⁡
x
7
2
6
bitri
⊢
A
∈
Hf
↔
∃
x
∈
ω
A
∈
R
1
⁡
x