Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Real intervals eliccelicod  
				
		 
		
			
		 
		Description:   A member of a closed interval that is not the upper bound, is a member
       of the left-closed, right-open interval.  (Contributed by Glauco
       Siliprandi , 17-Aug-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						eliccelicod.a    ⊢   φ   →   A  ∈    ℝ   *           
					 
					
						eliccelicod.b    ⊢   φ   →   B  ∈    ℝ   *           
					 
					
						eliccelicod.c    ⊢   φ   →   C  ∈   A  B           
					 
					
						eliccelicod.d    ⊢   φ   →   C  ≠  B         
					 
				
					Assertion 
					eliccelicod    ⊢   φ   →   C  ∈   A  B           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							eliccelicod.a   ⊢   φ   →   A  ∈    ℝ   *           
						
							2 
								
							 
							eliccelicod.b   ⊢   φ   →   B  ∈    ℝ   *           
						
							3 
								
							 
							eliccelicod.c   ⊢   φ   →   C  ∈   A  B           
						
							4 
								
							 
							eliccelicod.d   ⊢   φ   →   C  ≠  B         
						
							5 
								
							 
							eliccxr   ⊢   C  ∈   A  B      →   C  ∈    ℝ   *           
						
							6 
								3  5 
							 
							syl   ⊢   φ   →   C  ∈    ℝ   *           
						
							7 
								
							 
							iccgelb   ⊢    A  ∈    ℝ   *      ∧   B  ∈    ℝ   *      ∧   C  ∈   A  B       →   A  ≤  C         
						
							8 
								1  2  3  7 
							 
							syl3anc   ⊢   φ   →   A  ≤  C         
						
							9 
								
							 
							iccleub   ⊢    A  ∈    ℝ   *      ∧   B  ∈    ℝ   *      ∧   C  ∈   A  B       →   C  ≤  B         
						
							10 
								1  2  3  9 
							 
							syl3anc   ⊢   φ   →   C  ≤  B         
						
							11 
								6  2  10  4 
							 
							xrleneltd   ⊢   φ   →   C  <  B         
						
							12 
								1  2  6  8  11 
							 
							elicod   ⊢   φ   →   C  ∈   A  B