Metamath Proof Explorer


Theorem eliccelicod

Description: A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses eliccelicod.a φA*
eliccelicod.b φB*
eliccelicod.c φCAB
eliccelicod.d φCB
Assertion eliccelicod φCAB

Proof

Step Hyp Ref Expression
1 eliccelicod.a φA*
2 eliccelicod.b φB*
3 eliccelicod.c φCAB
4 eliccelicod.d φCB
5 eliccxr CABC*
6 3 5 syl φC*
7 iccgelb A*B*CABAC
8 1 2 3 7 syl3anc φAC
9 iccleub A*B*CABCB
10 1 2 3 9 syl3anc φCB
11 6 2 10 4 xrleneltd φC<B
12 1 2 6 8 11 elicod φCAB