Metamath Proof Explorer


Theorem elicopnf

Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion elicopnf ABA+∞BAB

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 elico2 A+∞*BA+∞BABB<+∞
3 1 2 mpan2 ABA+∞BABB<+∞
4 ltpnf BB<+∞
5 4 adantr BABB<+∞
6 5 pm4.71i BABBABB<+∞
7 df-3an BABB<+∞BABB<+∞
8 6 7 bitr4i BABBABB<+∞
9 3 8 bitr4di ABA+∞BAB