Metamath Proof Explorer


Theorem elimasni

Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010)

Ref Expression
Assertion elimasni CABBAC

Proof

Step Hyp Ref Expression
1 noel ¬C
2 snprc ¬BVB=
3 2 biimpi ¬BVB=
4 3 imaeq2d ¬BVAB=A
5 ima0 A=
6 4 5 eqtrdi ¬BVAB=
7 6 eleq2d ¬BVCABC
8 1 7 mtbiri ¬BV¬CAB
9 8 con4i CABBV
10 elex CABCV
11 9 10 jca CABBVCV
12 elimasng1 BVCVCABBAC
13 12 biimpd BVCVCABBAC
14 11 13 mpcom CABBAC