Metamath Proof Explorer


Theorem elimhyp

Description: Eliminate a hypothesis containing class variable A when it is known for a specific class B . For more information, see comments in dedth . (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses elimhyp.1 A=ifφABφψ
elimhyp.2 B=ifφABχψ
elimhyp.3 χ
Assertion elimhyp ψ

Proof

Step Hyp Ref Expression
1 elimhyp.1 A=ifφABφψ
2 elimhyp.2 B=ifφABχψ
3 elimhyp.3 χ
4 iftrue φifφAB=A
5 4 eqcomd φA=ifφAB
6 5 1 syl φφψ
7 6 ibi φψ
8 iffalse ¬φifφAB=B
9 8 eqcomd ¬φB=ifφAB
10 9 2 syl ¬φχψ
11 3 10 mpbii ¬φψ
12 7 11 pm2.61i ψ