Metamath Proof Explorer


Theorem elimhyp2v

Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp2v.1 A=ifφACφχ
elimhyp2v.2 B=ifφBDχθ
elimhyp2v.3 C=ifφACτη
elimhyp2v.4 D=ifφBDηθ
elimhyp2v.5 τ
Assertion elimhyp2v θ

Proof

Step Hyp Ref Expression
1 elimhyp2v.1 A=ifφACφχ
2 elimhyp2v.2 B=ifφBDχθ
3 elimhyp2v.3 C=ifφACτη
4 elimhyp2v.4 D=ifφBDηθ
5 elimhyp2v.5 τ
6 iftrue φifφAC=A
7 6 eqcomd φA=ifφAC
8 7 1 syl φφχ
9 iftrue φifφBD=B
10 9 eqcomd φB=ifφBD
11 10 2 syl φχθ
12 8 11 bitrd φφθ
13 12 ibi φθ
14 iffalse ¬φifφAC=C
15 14 eqcomd ¬φC=ifφAC
16 15 3 syl ¬φτη
17 iffalse ¬φifφBD=D
18 17 eqcomd ¬φD=ifφBD
19 18 4 syl ¬φηθ
20 16 19 bitrd ¬φτθ
21 5 20 mpbii ¬φθ
22 13 21 pm2.61i θ