Metamath Proof Explorer


Theorem eliocd

Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliocd.a φA*
eliocd.b φB*
eliocd.c φC*
eliocd.altc φA<C
eliocd.cleb φCB
Assertion eliocd φCAB

Proof

Step Hyp Ref Expression
1 eliocd.a φA*
2 eliocd.b φB*
3 eliocd.c φC*
4 eliocd.altc φA<C
5 eliocd.cleb φCB
6 elioc1 A*B*CABC*A<CCB
7 1 2 6 syl2anc φCABC*A<CCB
8 3 4 5 7 mpbir3and φCAB