Metamath Proof Explorer


Theorem eliunxp

Description: Membership in a union of Cartesian products. Analogue of elxp for nonconstant B ( x ) . (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Assertion eliunxp CxAx×BxyC=xyxAyB

Proof

Step Hyp Ref Expression
1 relxp Relx×B
2 1 rgenw xARelx×B
3 reliun RelxAx×BxARelx×B
4 2 3 mpbir RelxAx×B
5 elrel RelxAx×BCxAx×BxyC=xy
6 4 5 mpan CxAx×BxyC=xy
7 6 pm4.71ri CxAx×BxyC=xyCxAx×B
8 nfiu1 _xxAx×B
9 8 nfel2 xCxAx×B
10 9 19.41 xyC=xyCxAx×BxyC=xyCxAx×B
11 19.41v yC=xyCxAx×ByC=xyCxAx×B
12 eleq1 C=xyCxAx×BxyxAx×B
13 opeliunxp xyxAx×BxAyB
14 12 13 bitrdi C=xyCxAx×BxAyB
15 14 pm5.32i C=xyCxAx×BC=xyxAyB
16 15 exbii yC=xyCxAx×ByC=xyxAyB
17 11 16 bitr3i yC=xyCxAx×ByC=xyxAyB
18 17 exbii xyC=xyCxAx×BxyC=xyxAyB
19 7 10 18 3bitr2i CxAx×BxyC=xyxAyB