Metamath Proof Explorer


Theorem elixx1

Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis ixx.1 O=x*,y*z*|xRzzSy
Assertion elixx1 A*B*CAOBC*ARCCSB

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 1 ixxval A*B*AOB=z*|ARzzSB
3 2 eleq2d A*B*CAOBCz*|ARzzSB
4 breq2 z=CARzARC
5 breq1 z=CzSBCSB
6 4 5 anbi12d z=CARzzSBARCCSB
7 6 elrab Cz*|ARzzSBC*ARCCSB
8 3anass C*ARCCSBC*ARCCSB
9 7 8 bitr4i Cz*|ARzzSBC*ARCCSB
10 3 9 bitrdi A*B*CAOBC*ARCCSB