Metamath Proof Explorer


Theorem elo1mpt2

Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 12-May-2016) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1 φA
elo1mpt.2 φxAB
elo1d.3 φC
Assertion elo1mpt2 φxAB𝑂1yC+∞mxAyxBm

Proof

Step Hyp Ref Expression
1 elo1mpt.1 φA
2 elo1mpt.2 φxAB
3 elo1d.3 φC
4 2 lo1o12 φxAB𝑂1xAB𝑂1
5 2 abscld φxAB
6 1 5 3 ello1mpt2 φxAB𝑂1yC+∞mxAyxBm
7 4 6 bitrd φxAB𝑂1yC+∞mxAyxBm