Metamath Proof Explorer


Theorem elopabi

Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypotheses elopabi.1 x=1stAφψ
elopabi.2 y=2ndAψχ
Assertion elopabi Axy|φχ

Proof

Step Hyp Ref Expression
1 elopabi.1 x=1stAφψ
2 elopabi.2 y=2ndAψχ
3 relopabv Relxy|φ
4 1st2nd Relxy|φAxy|φA=1stA2ndA
5 3 4 mpan Axy|φA=1stA2ndA
6 id Axy|φAxy|φ
7 5 6 eqeltrrd Axy|φ1stA2ndAxy|φ
8 fvex 1stAV
9 fvex 2ndAV
10 8 9 1 2 opelopab 1stA2ndAxy|φχ
11 7 10 sylib Axy|φχ