Metamath Proof Explorer


Theorem eloprabi

Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses eloprabi.1 x = 1 st 1 st A φ ψ
eloprabi.2 y = 2 nd 1 st A ψ χ
eloprabi.3 z = 2 nd A χ θ
Assertion eloprabi A x y z | φ θ

Proof

Step Hyp Ref Expression
1 eloprabi.1 x = 1 st 1 st A φ ψ
2 eloprabi.2 y = 2 nd 1 st A ψ χ
3 eloprabi.3 z = 2 nd A χ θ
4 eqeq1 w = A w = x y z A = x y z
5 4 anbi1d w = A w = x y z φ A = x y z φ
6 5 3exbidv w = A x y z w = x y z φ x y z A = x y z φ
7 df-oprab x y z | φ = w | x y z w = x y z φ
8 6 7 elab2g A x y z | φ A x y z | φ x y z A = x y z φ
9 8 ibi A x y z | φ x y z A = x y z φ
10 opex x y V
11 vex z V
12 10 11 op1std A = x y z 1 st A = x y
13 12 fveq2d A = x y z 1 st 1 st A = 1 st x y
14 vex x V
15 vex y V
16 14 15 op1st 1 st x y = x
17 13 16 eqtr2di A = x y z x = 1 st 1 st A
18 17 1 syl A = x y z φ ψ
19 12 fveq2d A = x y z 2 nd 1 st A = 2 nd x y
20 14 15 op2nd 2 nd x y = y
21 19 20 eqtr2di A = x y z y = 2 nd 1 st A
22 21 2 syl A = x y z ψ χ
23 10 11 op2ndd A = x y z 2 nd A = z
24 23 eqcomd A = x y z z = 2 nd A
25 24 3 syl A = x y z χ θ
26 18 22 25 3bitrd A = x y z φ θ
27 26 biimpa A = x y z φ θ
28 27 exlimiv z A = x y z φ θ
29 28 exlimiv y z A = x y z φ θ
30 29 exlimiv x y z A = x y z φ θ
31 9 30 syl A x y z | φ θ