Metamath Proof Explorer


Theorem elorrvc

Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orrvccel.1 φPProb
orrvccel.2 φXRndVarP
orrvccel.4 φAV
Assertion elorrvc φzdomPzXRRV/cAXzRA

Proof

Step Hyp Ref Expression
1 orrvccel.1 φPProb
2 orrvccel.2 φXRndVarP
3 orrvccel.4 φAV
4 1 2 rrvdm φdomX=domP
5 4 eleq2d φzdomXzdomP
6 5 biimprd φzdomPzdomX
7 6 imdistani φzdomPφzdomX
8 1 2 rrvfn φXFndomP
9 fnfun XFndomPFunX
10 8 9 syl φFunX
11 10 2 3 elorvc φzdomXzXRRV/cAXzRA
12 7 11 syl φzdomPzXRRV/cAXzRA