Metamath Proof Explorer


Theorem elovmpo

Description: Utility lemma for two-parameter classes.

EDITORIAL: can simplify isghm , islmhm . (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses elovmpo.d D=aA,bBC
elovmpo.c CV
elovmpo.e a=Xb=YC=E
Assertion elovmpo FXDYXAYBFE

Proof

Step Hyp Ref Expression
1 elovmpo.d D=aA,bBC
2 elovmpo.c CV
3 elovmpo.e a=Xb=YC=E
4 1 elmpocl FXDYXAYB
5 2 gen2 abCV
6 3 eleq1d a=Xb=YCVEV
7 6 spc2gv XAYBabCVEV
8 5 7 mpi XAYBEV
9 3 1 ovmpoga XAYBEVXDY=E
10 8 9 mpd3an3 XAYBXDY=E
11 10 eleq2d XAYBFXDYFE
12 4 11 biadanii FXDYXAYBFE
13 df-3an XAYBFEXAYBFE
14 12 13 bitr4i FXDYXAYBFE