Metamath Proof Explorer


Theorem elovmpowrd

Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that ph may depend on z as well as on v and y . (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Hypothesis elovmpowrd.o O=vV,yVzWordv|φ
Assertion elovmpowrd ZVOYVVYVZWordV

Proof

Step Hyp Ref Expression
1 elovmpowrd.o O=vV,yVzWordv|φ
2 csbwrdg vVv/xWordx=Wordv
3 2 eqcomd vVWordv=v/xWordx
4 3 adantr vVyVWordv=v/xWordx
5 4 rabeqdv vVyVzWordv|φ=zv/xWordx|φ
6 5 mpoeq3ia vV,yVzWordv|φ=vV,yVzv/xWordx|φ
7 1 6 eqtri O=vV,yVzv/xWordx|φ
8 csbwrdg VVV/xWordx=WordV
9 wrdexg VVWordVV
10 8 9 eqeltrd VVV/xWordxV
11 10 adantr VVYVV/xWordxV
12 7 11 elovmporab1w ZVOYVVYVZV/xWordx
13 8 eleq2d VVZV/xWordxZWordV
14 13 adantr VVYVZV/xWordxZWordV
15 id VVYVZWordVVVYVZWordV
16 15 3expia VVYVZWordVVVYVZWordV
17 14 16 sylbid VVYVZV/xWordxVVYVZWordV
18 17 3impia VVYVZV/xWordxVVYVZWordV
19 12 18 syl ZVOYVVYVZWordV