Metamath Proof Explorer


Theorem csbwrdg

Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Assertion csbwrdg SVS/xWordx=WordS

Proof

Step Hyp Ref Expression
1 df-word Wordx=w|l0w:0..^lx
2 1 csbeq2i S/xWordx=S/xw|l0w:0..^lx
3 sbcrex [˙S/x]˙l0w:0..^lxl0[˙S/x]˙w:0..^lx
4 sbcfg SV[˙S/x]˙w:0..^lxS/xw:S/x0..^lS/xx
5 csbconstg SVS/xw=w
6 csbconstg SVS/x0..^l=0..^l
7 csbvarg SVS/xx=S
8 5 6 7 feq123d SVS/xw:S/x0..^lS/xxw:0..^lS
9 4 8 bitrd SV[˙S/x]˙w:0..^lxw:0..^lS
10 9 rexbidv SVl0[˙S/x]˙w:0..^lxl0w:0..^lS
11 3 10 bitrid SV[˙S/x]˙l0w:0..^lxl0w:0..^lS
12 11 abbidv SVw|[˙S/x]˙l0w:0..^lx=w|l0w:0..^lS
13 csbab S/xw|l0w:0..^lx=w|[˙S/x]˙l0w:0..^lx
14 df-word WordS=w|l0w:0..^lS
15 12 13 14 3eqtr4g SVS/xw|l0w:0..^lx=WordS
16 2 15 eqtrid SVS/xWordx=WordS