| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elovmpowrd.o | ⊢ 𝑂  =  ( 𝑣  ∈  V ,  𝑦  ∈  V  ↦  { 𝑧  ∈  Word  𝑣  ∣  𝜑 } ) | 
						
							| 2 |  | csbwrdg | ⊢ ( 𝑣  ∈  V  →  ⦋ 𝑣  /  𝑥 ⦌ Word  𝑥  =  Word  𝑣 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( 𝑣  ∈  V  →  Word  𝑣  =  ⦋ 𝑣  /  𝑥 ⦌ Word  𝑥 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑣  ∈  V  ∧  𝑦  ∈  V )  →  Word  𝑣  =  ⦋ 𝑣  /  𝑥 ⦌ Word  𝑥 ) | 
						
							| 5 | 4 | rabeqdv | ⊢ ( ( 𝑣  ∈  V  ∧  𝑦  ∈  V )  →  { 𝑧  ∈  Word  𝑣  ∣  𝜑 }  =  { 𝑧  ∈  ⦋ 𝑣  /  𝑥 ⦌ Word  𝑥  ∣  𝜑 } ) | 
						
							| 6 | 5 | mpoeq3ia | ⊢ ( 𝑣  ∈  V ,  𝑦  ∈  V  ↦  { 𝑧  ∈  Word  𝑣  ∣  𝜑 } )  =  ( 𝑣  ∈  V ,  𝑦  ∈  V  ↦  { 𝑧  ∈  ⦋ 𝑣  /  𝑥 ⦌ Word  𝑥  ∣  𝜑 } ) | 
						
							| 7 | 1 6 | eqtri | ⊢ 𝑂  =  ( 𝑣  ∈  V ,  𝑦  ∈  V  ↦  { 𝑧  ∈  ⦋ 𝑣  /  𝑥 ⦌ Word  𝑥  ∣  𝜑 } ) | 
						
							| 8 |  | csbwrdg | ⊢ ( 𝑉  ∈  V  →  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥  =  Word  𝑉 ) | 
						
							| 9 |  | wrdexg | ⊢ ( 𝑉  ∈  V  →  Word  𝑉  ∈  V ) | 
						
							| 10 | 8 9 | eqeltrd | ⊢ ( 𝑉  ∈  V  →  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥  ∈  V ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  →  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥  ∈  V ) | 
						
							| 12 | 7 11 | elovmporab1w | ⊢ ( 𝑍  ∈  ( 𝑉 𝑂 𝑌 )  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥 ) ) | 
						
							| 13 | 8 | eleq2d | ⊢ ( 𝑉  ∈  V  →  ( 𝑍  ∈  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥  ↔  𝑍  ∈  Word  𝑉 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  →  ( 𝑍  ∈  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥  ↔  𝑍  ∈  Word  𝑉 ) ) | 
						
							| 15 |  | id | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  Word  𝑉 )  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  Word  𝑉 ) ) | 
						
							| 16 | 15 | 3expia | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  →  ( 𝑍  ∈  Word  𝑉  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  Word  𝑉 ) ) ) | 
						
							| 17 | 14 16 | sylbid | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  →  ( 𝑍  ∈  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  Word  𝑉 ) ) ) | 
						
							| 18 | 17 | 3impia | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  ⦋ 𝑉  /  𝑥 ⦌ Word  𝑥 )  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  Word  𝑉 ) ) | 
						
							| 19 | 12 18 | syl | ⊢ ( 𝑍  ∈  ( 𝑉 𝑂 𝑌 )  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V  ∧  𝑍  ∈  Word  𝑉 ) ) |