Metamath Proof Explorer


Theorem elpglem3

Description: Lemma for elpg . (Contributed by Emmett Weisz, 28-Aug-2021)

Ref Expression
Assertion elpglem3 xxPgAyV𝒫y×𝒫yxAV×VxxPg1stA𝒫x2ndA𝒫x

Proof

Step Hyp Ref Expression
1 vex xV
2 pweq y=x𝒫y=𝒫x
3 2 sqxpeqd y=x𝒫y×𝒫y=𝒫x×𝒫x
4 eqid yV𝒫y×𝒫y=yV𝒫y×𝒫y
5 1 pwex 𝒫xV
6 5 5 xpex 𝒫x×𝒫xV
7 3 4 6 fvmpt xVyV𝒫y×𝒫yx=𝒫x×𝒫x
8 1 7 ax-mp yV𝒫y×𝒫yx=𝒫x×𝒫x
9 8 eleq2i AyV𝒫y×𝒫yxA𝒫x×𝒫x
10 elxp7 A𝒫x×𝒫xAV×V1stA𝒫x2ndA𝒫x
11 9 10 bitri AyV𝒫y×𝒫yxAV×V1stA𝒫x2ndA𝒫x
12 11 anbi2i xPgAyV𝒫y×𝒫yxxPgAV×V1stA𝒫x2ndA𝒫x
13 an12 xPgAV×V1stA𝒫x2ndA𝒫xAV×VxPg1stA𝒫x2ndA𝒫x
14 12 13 bitri xPgAyV𝒫y×𝒫yxAV×VxPg1stA𝒫x2ndA𝒫x
15 14 exbii xxPgAyV𝒫y×𝒫yxxAV×VxPg1stA𝒫x2ndA𝒫x
16 19.42v xAV×VxPg1stA𝒫x2ndA𝒫xAV×VxxPg1stA𝒫x2ndA𝒫x
17 15 16 bitri xxPgAyV𝒫y×𝒫yxAV×VxxPg1stA𝒫x2ndA𝒫x