Metamath Proof Explorer


Theorem elpqb

Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022)

Ref Expression
Assertion elpqb A0<AxyA=xy

Proof

Step Hyp Ref Expression
1 elpq A0<AxyA=xy
2 nnz xx
3 znq xyxy
4 2 3 sylan xyxy
5 nnre xx
6 nngt0 x0<x
7 5 6 jca xx0<x
8 nnre yy
9 nngt0 y0<y
10 8 9 jca yy0<y
11 divgt0 x0<xy0<y0<xy
12 7 10 11 syl2an xy0<xy
13 4 12 jca xyxy0<xy
14 eleq1 A=xyAxy
15 breq2 A=xy0<A0<xy
16 14 15 anbi12d A=xyA0<Axy0<xy
17 13 16 syl5ibrcom xyA=xyA0<A
18 17 rexlimivv xyA=xyA0<A
19 1 18 impbii A0<AxyA=xy